

US005936259A

United States Patent [19]

Katz et al.

[11] Patent Number: 5,936,259

[45] **Date of Patent:** Aug. 10, 1999

[54]	THIN FILM TRANSISTOR AND ORGANIC SEMICONDUCTOR MATERIAL THEREOF		
[75]	Inventors:	Howard Edan Katz, Summit, N.J.; Joyce G. Laquindanum, Hatfield, Pa.	
[73]	Assignee:	Lucent Technologies Inc. , Murray Hill, N.J.	
[21]	Appl. No.:	08/951,779	
[22]	Filed:	Oct. 16, 1997	
[51]	Int. Cl. ⁶ .	H01L 51/30 ; H01L 51/40	
[52]	U.S. Cl		
		257/288	
[58]	Field of S	earch 257/40, 288; 438/99,	
		438/151	

[56] References Cited

U.S. PATENT DOCUMENTS

5,574,291	11/1996	Dodabalapur et al 247/40
5,596,208	1/1997	Dodabalapur et al 257/66
5,612,228	3/1997	Shieh et al 437/1
5,625,199	4/1997	Baumbach et al
5,854,139	12/1998	Aratani et al

OTHER PUBLICATIONS

Patent No. HEI 8'1996'–18125, AA: "Novel π–Extended Thiphene–Fused Electron Acceptors for Organic Metals," by de la Cruz, P. et al., *J. Org. Chem.* 57, p. 6192.

"Logic Gates Made From Polymer Transistors and Their Use in Ring Oscillators", by Brown, A. R. et al., *Science*, vol. 270, pp. 972–974 (Nov. 10, 1995).

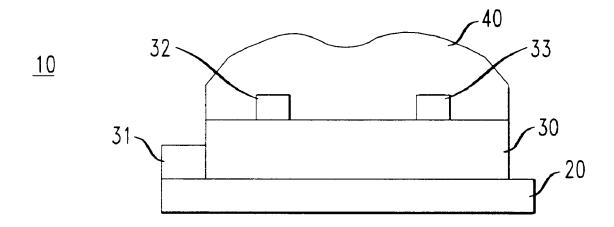
"Semiconductor Devices", by Sze, S. M., John Wiley & Sons, pp. 200–207.

"Morphological Origin of High Mobility in Pentacene Thin-Film Transistors", by Laquindanum, J. et al., *Chemistry of Materials*, vol. 8, No. 11, pp. 2542–2544 (1996).

"Organic Field-Effect Transistors with High Mobility Based on Copper Phthalocyanine", by Boa, Z. et al., *Appl. Phys. Lett.*, 69 (20), 11 pp. 3096–3068 (Nov. 11, 1966).

"Soluble and Processable Regioregular Poly(3–hexylthipene) for Thin Film Field–Effect Transistotr Applications with High Mobility", by Bao, Z. et al., *Appl. Phys. Lett.*, 69 (26), p. 4108 (Dec. 23, 1996).

"Structural Basis for High Carrier Mobility in Conjugated Oligomers", by Garnier, F. et al., *Workshop on the Materials Science of Conductive Polymers*, Vol. 45, p. 163 (1991).


"Benzodithiophene Rings as Semiconductor Building Blocks", by Laquindanum, J. et al., *Advanced Materials*, 9, No. 1, pp. 36–39 (1997).

Primary Examiner—John Guay Attorney, Agent, or Firm—Richard J. Botos

[57] ABSTRACT

Thin film transistors in which the active layer is a film of an organic semiconductor with a structure having two or three six-membered, fused aromatic rings with two five-membered, heterocyclic aromatic rings fused thereto. The five-membered rings are either substituted or unsubstituted. If substituted, the substituents are either alkyl or alkoxyalkyl with about two to about 18 carbon atoms. The organic semiconductor compound has a field-effect mobility greater than $10^{-3}~\rm cm^2/Vs$ and a conductivity less than about $10^{-6}~\rm S/cm$ at $20^{\circ}~\rm C$. Thin film devices made of these materials have an on/off ratio of at least about 100.

10 Claims, 1 Drawing Sheet

